Evidence of rain shadow in the geologic record: repeated evaporite accumulation at extensional and compressional plate margins

Christopher G. St. C. Kendall, Paul Lake, H. Dallon Weathers III, Venkat Lakshmi,
Department of Geological Sciences
University of South Carolina
Columbia, SC 29208
vlakshmi@geol.sc.edu & kendall@sc.edu
(803)-777-3552 & -2410

John Althausen
John.Althausen@cmich.edu
Department of Geography
Central Michigan University
Mt. Pleasant, MI 48859

and

A.S. Alsharhan
sharhana@emirates.net.ae
Faculty of Science,
U.A.E. University,
P.O.Box: 17551,
Al-Ain, United Arab Emirates

Submitted to

INTERNATIONAL CONFERENCE ON DESERTIFICATION

Dubai, 2002
ABSTRACT

Arid climates have been common and effected water resources throughout earth history. This climatic history provide a key to understanding current causes for desertification and a means to devise realistic strategies for coping with its effects.

Desert climates are often indicated in the geologic record by thick sections of evaporites (anhydrite, gypsum and halite) that have accumulated in both lacustrian and marine settings either adjacent to margins of recently pulled apart continental plates, in compressional terrains of colliding margins, or in areas of local tectonic uplift or sediment accumulation that have isolated standing bodies of water from the sea.

These linear belts of evaporitic rocks can be directly related to rain shadow caused by:

1) The aerial extent of adjacent enveloping continental plates
2) The occurrence of uplifted crust marginal to linear belts of depressed crust
3) The occurrence of linear belts of depressed crust, with surfaces that are often below sea level
4) The occurrence of internal drainage and/or limited access to open ocean waters
5) The location within a climatic belt already characterized by low rainfall

Examples of evaporite generation in depressed extensional basins belong to the Mesozoic sedimentary section of the North and South Atlantic margins: the Mesozoic of the northern Gulf of Mexico; the Mesozoic of the Yemen rift belt; the Mesozoic and Tertiary of Eritrea; the East African Rift; the Dead Sea, and so on.

In contrast the current Arabian Gulf and its underlying Mesozoic to Tertiary rock section is a prime example of a linear intercontinental compressional zone that has a history punctuated by limited access to the sea and repeated desert climates. Other comparable examples include sections of the Silurian of the Michigan Basin and western New York State; the Devonian of western Canada and the Northwest USA; the Pennsylvanian of the Paradox Basin; the Permian of New Mexico and west Texas; the Permian of the Zechstein Basin; the Jurassic of the Neuquen Basin of Argentina; the Tertiary of the
Mediterranean; and the Mesozoic and Tertiary of the final phases of the Tethys Sea (e.g., the Caspian and Aral Seas, etc.).

Examples of evaporite accumulation behind barriers developed by structure and sediment buildup include the Permian Khuff Formation and the upper Tuwaiq Mountain Group, both of which accumulated on the eastern margin of the Arabian Shield and were isolated from the Tethys Ocean.

The recognition of the strong tie between plate setting and climate can be used to predict the evolution of the climatic conditions within present day desert settings. The water resources in these areas of rain shadow and their proximity to the continental margins of lakes and narrow marine bodies match those of the past. These resources are often finite and need to be husbanded. Though some effects of deserts associated with rain shadow can be circumvented through river diversion and creation of artificially dammed water reservoirs, reverse osmosis etc., many other desert areas are subject to depletion of fossil water resources no matter the care taken to avoid this effect!

The geologic record of the earth has a strong message for us all, particularly hydrologists, suggesting that despite human intervention, the effects of desertification are difficult to contend with and often almost impossible to avoid. The overwhelming signal from Nature suggests that the solution to water resource problems is often a mix of better engineering of the current resources and thoughtful political decisions.

INTRODUCTION

Examining plate reconstructions of continental positions through time immediately highlights the high frequency of desert climates through earth history (Golonka, Ross and Scotese 1994). For instance from geological record one can surmise that desert climates have existed from the Precambrian to the Recent, existing in the past as they do today on wide continental landmasses positioned in the arid subtropical belt straddling approximately 30 degrees of the equator, particularly when and where mountains surrounded these areas. In the examples that follow in the paper, we indicate that the
coastal regions adjacent to terrestrial deserts have often been the sites of evaporite accumulation that can be used as evidence of desertification.

As with the deserts of the present day, deserts of the past were by definition closely linked to a lack of water resources. The sedimentary record shows that unchanging and repeated desertification caused the water table to decline and become saline, as it did in the rain-shadowed deep intermountain basins of the western USA, British Columbia, the Andes, and the Tibetan Plateau with the precipitation of evaporite minerals (Kendall 1992). Natural vegetation would have declined, as it clearly has done through the last 3000 to 4000 years in the Rhub al Khali (Glennie 1997) and in the Tigris/Euphrates valleys (Thomas and Middleton 1994). Erosion of sediments would have been common (Thomas and Middleton 1994) and aeolian sediments tended to accumulate, as they did to form sandstones of the Navajo Formation (Kucurek 1991) and the Rotliegendes Formation (Glennie 1997; and Howell and Mountney 1997).

Geological data suggest that repeated occurrences of desert climate and their common origins were and are unavoidable. Nevertheless though desertification is imposed by geography and physiographic position, one can argue that the effects of deserts can be ameliorated by transporting water through the diversion of current drainage (Thomas and Middleton 1994) and by reverse osmosis of seawater and subsurface brine, as can be seen at various locations in Saudi Arabia, Kuwait and the United Arab Emirates (Morton et al 1968; Al-Mutaz 2001; Gotor et al. 2001; Harusi et al. 2001; Martin-Lagardette 2001; Shaposhnik et al. 2001; Wilf and Schierach 2001; and Zilouchian 2001). In contrast Bourouni et al. (2001) suggest that a process of humidification-dehumidification (HD) is a technique that can be adapted for water desalination when the demand is decentralized.

Similarly judicious use of fossil water (Leake et al 2000, and Alliey et al 1999) suggests that it is possible to develop, manage, and protect groundwater resources in a sustainable manner. The same thing can be said of judicious catchment of existing runoff (Guymon and Hromadka 1985). In light of this argument we suggest that the earth’s history can be
used to better understand the broader causes of current desertification and develop realistic strategies for coping with its effects.

The stratigraphic signal of desert climates

Desert climates are indicated by the presence of aeolian sediments, as for example the Jurassic Navajo sandstones of the Western USA (Prothero and Schwab 1996) and the Rotliegendes sandstones of the Permian of the Zechstein Basin in Western Europe (Glennie 1997; Howell and Mountney 1997). They may also signal themselves with the focus of this paper, evaporites. These evaporite indicators can be continental salt flat and playa evaporites like those of Death Valley (Spencer and Roberts 1998, and Roberts and Spencer 1998), or the Wilkins Peake Member of the Green River Formation (Kendall 1992); arid coastline evaporites like those of the Permian backreef section of the Guadalupe Mountains of west Texas (Ward et al 1986), or the easternmost of the Hith Anhydrite of the Central offshore UAE (Alsharhan and Kendall 1994); or they may occur as isolated marine and lacustrian evaporite basins such as that of the current Caspian Sea (Dzens-Litovskiy and Vasil'yev 1973) or the Aral Sea (Rubanov and Bogdanova 1987) representing the last dying gasp of the Tethys Sea, or as the product of isolation related to breakup as in the Gabon Basin in the South Atlantic, (Trayner et al. 1992) or the initiation of the Gulf of Mexico (Cheong et al. 1992) or the North Atlantic (Carswell et al. 1990, Tanner 1995, El-Tabakh et al. 1997, and Koning 1998).

When and where do evaporites associated with desert climates occur?

The literature cited above suggests that deserts and evaporites are associated but it remains to be established when thick sections of evaporites (anhydrite, gypsum, and halite) accumulate. They are found in both lacustrian and marine settings (Kendall 1992) either:

1) Adjacent to margins of recently pulled-apart continental plates (Figure 1)
2) In compressional terrains of colliding margins (Figure 2)
3) Behind structural and depositional barriers (Figure 3) If these various linear tectonic belts are in rain shadow there is a consequent accumulation of evaporite sediments. This rain shadow might be caused by:
1) The aerial extent of adjacent enveloping continental plates. In fact current deserts are often related to rain shadow caused by wide continental plates as can be seen in the Sahara (Benazzouz 1993), and the Empty Quarter or Rhub al Khali of Arabia (Glennie 1997; Howell, and Mountney 1997) and central Australia (Woods et al. 1990, and Nanson and Price 1998).

2) The occurrence of uplifted crust marginal to linear belts of depressed crust forming intermountain basins like that of Clinton Lake, British Columbia, (Renaut 1994); the Salar Grande in the Altiplano “Puna” Plateau of the northern Chilean Andes (Alonso et al. 1991); Eastern Californian Death Valley (Spencer and Roberts 1998; and Roberts and Spencer 1998); Mongolia (David and Nicholas 1994); and Xinjiang (Jiang 1991)

3) The occurrence of depressed-crust in linear belts with surfaces that are often below sea level such as the current Dead Sea (Neev and Emery 1967; Kendall and Harwood 1996; and Csato et al. 1997); the Mediterranean during the Messinean, (Schreiber 1975); the Red Sea (El-Anbaawy et al. 1992) and the Gulf of Suez; Aral Sea (Rubanov and Bogdanova 1987); and the Caspian Sea (Dzens-Litovskiy and Vasil’yev 1973).

4) The occurrence of internal drainage and/or limited access to open ocean waters as can be seen in the Aral Sea (Rubanov and Bogdanova 1987); Caspian Sea (Dzens-Litovskiy and Vasil’yev 1973); the early South (Trayner et al 1992) and North Atlantic (Carswell et al. 1990; Tanner 1995; El-Tabakh et al. 1997; and Koning 1998), Late Triassic and Early Jurassic of Gulf of Mexico (Cheong et al. 1992).

Evaporite generation during breakup of continental plates

The Mesozoic sediments of the northern Atlantic (Carswell et al. 1990; Tanner 1995; El-Tabakh et al. 1997; and Koning 1998) exhibit the presence of an isolated linear belt of interior drainage with a limited or restricted entrance to the sea (Figure 1). Regional drainage tended to flow away from breakup margins and the air system was that of the arid tropics. There was a wide envelope of surrounding continents. Other similar extensional evaporite basins include the Mesozoic of the northern Gulf of Mexico (Cheong et al. 1992); the Mesozoic of the South Atlantic margins (Trayner et al 1992);
the Mesozoic of the Yemen rift belt (Youssef 1998, Csato 1998; Csato and Kendall, 1997); the Mesozoic and Tertiary of Eritrea; the East African Rift; the Dead Sea (Neeve and Emery 1967; Kendall and Harwood 1996; Csato et al. 1997), and so on.

Evaporite generation during collision of continental plates

The current Arabian Gulf and the underlying Late Mesozoic to Tertiary of the area (Murris 1980), the Fars of Iran (Buchbinder 1995; Aqrawi 1993; and Kashfi 1980) are stratigraphic sections that represent prime examples of a linearly depressed intercontinental compressional zone that has a history punctuated by limited access to the sea and repeated desert climates (Figure 2). This sea represents an isolated linear belt of interior drainage with a restricted entrance to the open ocean. Regional drainage tends to flow into the Arabian Gulf and the air system is that of the arid tropics. There is a wide envelope formed by the surrounding subcontinents of Arabia and Asia Minor.

Other comparable examples from collision margins include sections of the Silurian of the Michigan Basin, which is situated on the cratonic interior landward of the Appalachian Foreland basin (Briggs and Lucas 1954; Briggs and Briggs 1974; Nurmi and Friedman 1974; Gill et al. 1978; Shaver 1991); the Devonian of Western Canada and the Northwest USA where the sediments collected in the cratonic interior landward of the Cordilleran Foreland basin (Whittaker and Mountjoy 1996; Kendall 1978; Wardlaw and Reinson 1971; and Klingspor 1969); the Pennsylvanian of the Paradox Basin which is located in the cratonic interior landward of the Cordilleran Foreland basin (Kendall 1988; Williams-Stroud 1994); the Permian of New Mexico and west Texas, which is located in the cratonic interior landward of the Marathon Foreland basin (Ward et al. 1986); the Permian of the Zechstein Basin which is located in the cratonic interior landward of the Alpine Foreland basin (Strohmenger et al. 1996; Smith 1980; Wagner et al 1981; Goodall et al 1991); the Jurassic of the Neuquen Basin of Argentina located in the cratonic interior landward of the Andean Foreland basin (Barrio 1990); the Tertiary of the Mediterranean, which is a basin trapped when oceanic crust was caught between Africa and the Alpine chain (Schreiber 1975); and the Mesozoic and Tertiary of the final phases of the Tethys Sea where the cratonic interior lies landward of the Alpine/Himalayan
Foreland basin in the Caspian Sea (Dzens-Litovskiy and Vasil’yev 1973) and Aral Sea (Rubanov and Bogdanova 1987).

Evaporite generation behind structural and sediment-generated barriers.

In contrast to the above examples are the Late Paleozoic Khuff Formation of Saudi Arabia (Charara et al. 1991; Al-Jallal 1991, Stump and van der Eem 1994; and Al-Aswad 1997) and the UAE and Oman (Murris 1980) (Figure 3) and early Mesozoic Arab D and Hith Anhydrite Formations of Saudi Arabia, southern Kuwait, and western Iran (Murris 1980; Alsharhan and Magara 1994; and De Matos 1994) (Figure 4). In both these cases the sedimentary sections of the Arabian Gulf contain evaporites formed when barriers were formed by the movement of what was an original Hercynian horst and block terrain adjacent to the southern shore of the Tethys Ocean. These barriers accumulated sediment over them and limited access to the sea. This lead to the punctuation of the geological record with evaporites when there was an associated occurrence of repeated desert climates. These bodies of the seawater occurred as isolated linear belts of interior drainage with restricted entrance to the open Tethys Ocean. Regional drainage probably tended to flow into this basin, and the air system was that of the arid tropics. There was a wide envelope formed by the surrounding subcontinents of Arabia and Africa.

Another comparable feature is that of the Lower Cretaceous Ferry Lake Anhydrite of Alabama and Florida (Raymond 1995), which formed behind a carbonate barrier with limited access to the Gulf of Mexico.

Conclusions

The recognition of the strong tie between plate setting and climate can be used to understand the unforgiving evolution of the climatic conditions within present day desert settings. The water resources in these areas of rain shadow and their proximity to the continental margins of lakes and narrow marine bodies match those of the past. Current resources are often finite and need to be husbanded. Though some effects of deserts associated with rain shadow can be circumvented through river diversion and creation of artificially dammed water reservoirs, many other desert areas are subject to depletion of fossil water resources no matter the care taken to avoid this effect!
Certainly the earth’s geologic record of has a strong message for us all, particularly the hydrologists among us. Despite human intervention, the effects of desertification are difficult to contend with and often almost impossible to avoid. The overwhelming signal from Nature suggests that the solution to water resource problems is often a mix of better engineering of the current resources and thoughtful politics motivated by an understanding of the natural systems involved. It would appear that reverse osmosis could best take advantage of the secondary and tertiary use of wastewater (Al-Mutaz 2001; Gotor et al 2001; Harusi et al 2001; Martin-Lagardette 2001; Shaposnik et al 2001; Wilf and Schierach 2001; and Zilouchian 2001). In contrast, Bourouni et al. (2001) suggest that a process of humidification-dehumidification (HD) is a technique that can be adapted for water desalination when the demand is decentralized.
References

Alliey, W. M., Reilly T. E., and Franke, O. L., 1999, Sustainability of ground-water resources; USGS Circular 1186, 79P.

Buchbinder, B. 1995, Miocene carbonates and evaporites of the Middle East; geodynamics and eustatic controls, in Arkin, Yaacov, and Avigad, Dov (editors), Annual Meeting - Israel Geological Society, 1995, p. 14

Csato, I., 1998, Structural and sequence stratigraphic framework of the Mintaq Basin, Yemen, The 1st Yemen Oil and Gas Conference '98, Sana'a, Yemen.

Dali, Ayad H., 1975, Depositional environment of the upper Silurian of the Michigan Basin, p. 44.

De Matos, J. E., 1994, Upper Jurassic-Lower Cretaceous stratigraphy; the Arab, Hith and Rayda formations in Abu Dhabi Simmons, M. D., and Austin, Ronald L. (editors), Micropaleontology and hydrocarbon exploration in the Middle East (editor), British Micropaleontological Society Publication Series, p. 81-111.

Dzens-Litovskiy, A. I., and Vasil'yev, G. V., 1973, Geologic conditions of formation of bottom sediments in Karabogaz-Gol in connection with fluctuations of the Caspian Sea level [with comment], Marine Evaporites; Origin, Diagenesis, and Geochemistry, Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania, p. 9-16.

Gotor, AG; Baez, SOP; Espinoza, and CA; Bachir, SI, 2001, Membrane processes for the recovery and reuse of wastewater in agriculture; Desalination, vol. 137, no. 1-3, pp. 187-192.

Guymon, Gary L. and Hromadka, T. V., II, 1985, Modeling of groundwater response to artificial recharge Asano, Takashi (editor), Artificial recharge of groundwater, p. 129-149

Harusi, Y; Rom, D; Galil, N; and Semiat, R, 2001, Evaluation of membrane processes to reduce the salinity of reclaimed wastewater; Desalination, vol. 137, no. 1-3, pp. 71-89

Howell, John, and Mountney, Nigel, 1997, Climatic cyclicity and accommodation space in arid to semi-arid depositional systems; an example from the Rotliegend Group of the UK southern North Sea, in Ziegler, Karen, Turner, Peter and Daines, Stephen R. (editors), Petroleum geology of the southern North Sea; future potential, Geological Society Special Publications, 123, p. 63-86.

Kashfi, Mansour S., 1980, Stratigraphy and environmental sedimentology of lower Fars Group (Miocene), South-Southwest Iran, AAPG Bulletin, 64 (12), p. 2095-2107.

Kocurek, Gary, Interpretation of ancient eolian sand dunes, Annual Review of Earth and Planetary Sciences, 19, p. 43-75

Murris, R. J., 1980, Middle East: stratigraphic evolution and oil habitat: AAPG Bulletin v. 64, 597-618.

Strohmenger, Christian, Voigt, Ellen, and Zimdars, Johannes, 1996, Sequence stratigraphy and cyclic development of basal Zechstein carbonate-evaporite deposits with emphasis on Zechstein 2 off-platform carbonates (Upper Permian, Northeast Germany) in Gaupp, Reinhard, and van de Weed, Andrew A. (editors), Approaches to sequence stratigraphy, Sedimentary Geology, 102 (1-2), p. 33-54.

Stump, T. E., and van der Eem, J. G., 1994, Overview of the stratigraphy, depositional environments and periods of deformation of the Wajid outcrop belt, southwestern Saudi Arabia in Al-Husseini, Moujahed I. (editor), Geo '94; the Middle East petroleum geosciences; selected Middle East papers from the Middle East geoscience conference, p. 867-876.

Figure 1. The geography of the Mesozoic arm of the northern Atlantic exhibit the presence of an isolated linear belt of interior drainage with a limited or restricted entrance to the sea (Scotese and Sager 1988; and Golonka et al 1994). Regional drainage tended to flow away from breakup margins and the air system was that of the arid tropics. There was a wide envelope of surrounding continents.
Figure 2. The current Arabian Gulf represents prime example of a linearly depressed intercontinental compressional zone that has a history punctuated by limited access to the sea and repeated desert climates. This sea represents an isolated linear belt of interior drainage with a restricted entrance to the open ocean. Regional drainage tends to flow into the Arabian Gulf and the air system is that of the arid tropics. There is a wide envelope of desert shadow formed by the surrounding subcontinents of Arabia and Asia Minor. (Photo by NASA).
Figure 3. Setting of the Late Paleozoic Khuff Formation of Saudi Arabia (Golonka et al 1994) which contains evaporites formed when barriers were formed by the movement of what was an original Hercynian horst and block terrain adjacent to the southern shore of the Tethys Ocean. These barriers limited access to the sea punctuating the geological record with evaporites when there was an associated occurrence of repeated desert climates. These bodies of the seawater occurred as isolated linear belts of interior drainage with restricted entrance to the open Tethys Ocean. Regional drainage probably tended to flow into this basin, and the air system was that of the arid tropics. There was a wide envelope formed by the surrounding subcontinents of Arabia and Africa.
Figure 4. Setting of the Late Jurassic Arab D and Hith Anhydrite Formations of Saudi Arabia (Golonka et al. 1994) which contain evaporites formed when barriers were formed by the movement of what was an original Hercynian horst and block terrain adjacent to the southern shore of the Tethys Ocean and the accumulation of sediment over them. These barriers limited access to the sea punctuating the geological record with evaporites when there was an associated occurrence of repeated desert climates. These bodies of the seawater occurred as isolated linear belts of interior drainage with restricted entrance to the open Tethys Ocean. Regional drainage probably tended to flow into this basin, and the air system was that of the arid tropics. There was a wide envelope formed by the surrounding subcontinents of Arabia and Africa.