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Aperiodic accumulation of cyclic peritidal carbonate

Carl N. Drummond
Bruce H. Wilkinson

ABSTRACT

Tabulation of thickness data on nearly 3000 Proterozoic and Paleozoic peritidal carbonate
cycles indicates that metre-scale facies associations exhibit exponential thickness frequency
distributions. Because carbonate deposition occurs during infilling of available space between
sea level and the surface of the preceding cycle, and because the rate of generation of accom-
modation space is ultimately determined by rates of platform subsidence, thicknesses of indi-
vidual cycles must record the duration of time since deposition of underlying units. Exponential
thickness distributions therefore require either that upward-shoaling carbonates record ape-
riodic accumulation, or that any periodic forcing manifest during sedimentation has been
masked by the vagarious nature of depositional processes. Such a conclusion is contrary to
interpretation of such carbonate units as originating from high-frequency eustatic change. In
addition, exponential thickness distributions and sequence thickness structures are replicated
when assuming a random probability of carbonate deposition under conditions of constant
subsidence. The nature of cycle thickness distributions therefore invalidates virtually any en-
deavor to derive an average depositional period from mean cycle thicknesses, and refutes the
use of such estimates as proxy records of past sea-level oscillation frequency, whether they are
related to Milankovitch-band climate forcing or to any other periodic process.

INTRODUCTION

Construction of a high-resolution chrono-
stratigraphic framework upon which to de-
termine rates of geologic processes has long
been a goal of stratigraphers and sedimen-
tary geologists. Moreover, the presence of
upward-shoaling metre-scale facies associa-
tions has made shallow-water carbonate se-
quences particularly attractive in this re-
gard; over the past decade numerous field
and modeling studies have employed cyclic
marine sequences as a chronometer from
which to construct such a temporal strati-
graphic framework (Anderson and Good-
win, 1990; Goldhammer et al., 1987, 1990;
Goodwin and Anderson, 1985; Koerschner
and Read, 1989; Osleger and Read, 1991;
Read and Goldhammer, 1988). These efforts
have led to development of a scenario of re-
current cycle generation in response to pe-
riodic sea-level change, a cognizance of ep-
isodic carbonate accumulation that has
become fully integrated with related percep-
tions as to the relative importance of eustatic
variation in sequence stratigraphy (Vail et
al., 1977; Posamentier et al., 1988; Posamen-
tier and Vail, 1988).

This scenario holds that sequences of cy-
clic beds are the products of extrabasinal
forcing, the frequency of which is generally
calculated from cycle thickness data through
use of various statistical techniques. More-
over, such efforts have determined that
mean cycle frequencies are generally
equivalent to Earth orbital periodicities.
On the basis of this similarity, workers
have concluded that metre-scale cycles
owe their origin to Milankovitch-driven
eustatic change (Bond et al., 1991; Gold-
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hammer et al., 1987, 1990, 1991; Osleger
and Read, 1991).

CYCLICITY AND PERIODICITY

Vertical repetition of sedimentary facies
within carbonate sequences is a common
depositional motif of cratonic rocks of all
ages. Cyclic carbonate units reportedly con-
sist of gradual upward transitions from rela-
tively deep to relatively shallow water facies
associations separated by abrupt contacts be-
tween shallow- and deep-water facies of the
following cycle. Upward shoaling is inter-
preted to record the repeated episodic filling
of available accommodation space.

Relations between the vertical dimension
of peritidal cycles and secular periodicity
during their accumulation stems from the
fact that over the long term, rates of gener-
ation of accommodation space must equal
rates of basin subsidence, a process taken to
be relatively constant at the (few million
years) time scales considered (e.g., Read
and Goldhammer, 1988; Goldhammer et al.,
1987, 1990). If cyclic repetition of carbonate
facies in space is also periodic in time, then
the average amount of accommodation
space filled during the deposition of each cy-
cle should be equal to the product of sub-
sidence rate and periodicity of accumula-
tion. Moreover, because rates of carbonate
deposition in modern shallow-water settings
are several orders of magnitude faster than
rates of basin subsidence (Anders et al.,
1987; Sadler, 1981; Schiager, 1981; Wilkin-
son et al., 1991), episodic creation of accom-
modation space is typically considered as
being augmented through periodic sea-level
change. The thicknesses of carbonate cycles
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formed under conditions of periodic eustatic
forcing should be directly related to the fre-
quency of sea-level change during their
accumulation.

THICKNESS FREQUENCY
DISTRIBUTIONS

It has been noted that the distribution of
sedimentary-bed thicknesses, including car-
bonate cycles, is apparently unimodal and
positively skewed (e.g., Davis, 1986; Krum-
bein and Graybill, 1965; Schwarzacher,
1975). If a logarithmic transformation of bed
thickness is used, such distributions take on
the shape of a normal distribution; tradition-
ally, such conversion is accomplished to re-
duce skewness and facilitate comparison
with the normal distribution. Although log-
normal populations are common in natural
systems (Ahrens, 1954; Crowley et al., 1986;
Friedman, 1962; Power, 1992; Putz, 1952;
Wertz, 1949), little effort has been made to
understand the origin of such distributions in
cyclic sequences, or to determine if alternate
mathematical expressions are equally
representative.

Measured sections of cyclic carbonate se-
quences from the Paleoproterozoic Rock-
nest Formation in northwest Canada (Grot-
zinger, 1986) and from Cambrian and
Ordovician sequences of North America
{Koerschner and Read, 1989; Montanez and
Osleger, 1993; Osleger and Read, 1991,
1993; Read and Goldhammer, 1988) yield
extensive data on the thickness of compo-
nent cycles. Moreover, like cycle thick-
nesses reported for the Middle Triassic
Latemar buildup in northern Italy reported
by Hinnov and Goldhammer (1991), both
Proterozoic and Phanerozoic data may be
recast as lognormal frequencies (Fig. 1, in-
sets). However, both data sets also com-
prise nearly ideal exponential thickness fre-
quency distributions wherein cycles thinner
than a few decimetres are increasingly un-
derrepresented (Fig. 1, A and B). Similar
distributions occur at the scale of individual
stratigraphic sections as well as entire basins
of deposition, and thus are independent of
local or regionally controlled parameters
such as subsidence rate. The lognormal ap-
pearance of either group reflects a relative
absence of units thinner than the modal fre-
quency within each population, thinner than
2.4 m among Proterozoic units and thinner
than 0.45 m within Phanerozoic cycles. It is
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Figure 1. Frequency (F) distributions of carbonate
cycles from (A) 21 stratigraphic sections of Paleo-
proterozoic Rocknest Formation, Northwest Terri-
tories, Canada (Grotzinger, 1986), and from (B) nu-
merous Cambrian and Ordovician sequences of
North America (Koerschner and Read, 1989; Mon-
tanez and Osleger, 1993; Osleger and Read, 1991,
1993; Read and Goidhammer, 1988). In both in-
stances reported data show exponential distribu-
tion of thickness frequencies, wherein cycles thin-
ner than a few decimetres (solid bars) are
increasingly underrepresented, and log transforms
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of thicknesses result in approximately normal
thickness frequency distributions (insets).

arguable that if these carbonate cycles can
be shown to have a distinct modal thickness
frequency, then that thickness interval may
represent a sedimentary response to some
forcing periodicity. Alternatively, carbonate
cycles may in fact have exponential thick-
ness frequencies wherein narrow beds are
unrecognized and/or unrecorded in meas-
ured sections. If so, constraints imposed by
relations of sediment generation and accu-
mulation require that time intervals between
depositional events are also exponentially
distributed and therefore aperiodic. Three
points lead us to interpret observed lognor-
mal distributions as the product of biased
sampling of a naturally occurring exponen-
tial distribution.

First, exponential distributions of many
scalar parameters are abundant within nat-
ural systems, such as amounts of rainfall and
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magnitudes of temperature change in daily,
monthly, and yearly time spans. Similarly,
turbidite thickness data exhibit exponential
distributions (McBride, 1962; Walker and
Sutton, 1967; Hsii, 1983; Lowery, 1992), al-
though it is not yet unequivocal if these are
best linearized in thickness-log frequency
or log thickness-log frequency space. Al-
though the abundance of exponential proc-
esses and products (Mandelbrot, 1983) in
Earth surface systems makes no forceful
comment as to the specific nature of carbon-
ate-cycle thicknesses, such distributions
certainly comprise an extraordinary number
of geologic phenomena.

Second, it is our contention that the log-
normal distribution exhibited by cycle thick-
ness data is largely an artifact of recording
processes that unavoidably or inadvertently
introduce a strong bias against the recogni-

tion of thin peritidal cycles. Such a bias is
likely the result of a reluctance to designate
thin but upward-shoaling facies associations
as discrete genetic units. The nature of this
thin-cycle bias becomes apparent when ex-
amining vertically dipping units within the
Cambrian Conococheague Formation ex-
posed near Wytheville, Virginia. There, as
carefully reported by Koerschner and Read
(1989), most cycles begin as thrombolitic to
digitate boundstone or flaser-bedded “‘rib-
bon rock” (Demicco, 1983) that passes up-
ward toward cycle-top cryptalgal laminites.
The general rarity of distinct lithologic con-
trast between distal and proximal facies
causes some difficulty in defining cycles pre-
cisely, but a much greater problem arises
from the fact that progression from thick to
thin cycles occurs primarily with the loss of
deeper water facies (e.g., Koerschner and
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Read, 1989). This results in nearly complete
gradation between conspicuous upward-
shoaling units with well-developed tidal-flat-
over-subtidal facies, and layers a few deci-
metres thick of laminite over flaser bedding
that only equivocally could be interpreted as
cyclic, and centimetres-thick layers of per-
itidal laminite recording nearly invariant wa-
ter depths. The net result of cycle thinning

by progressive loss of distal lithologies is
that, at a decimetre to centimetre scale of
observation, upward shoaling cannot be
demonstrated or even inferred; thus, by ne-
cessity when defining cycles, thinner peritid-
al layers are incorporated into the tops of
underlying cycles. Such artificial amalgam-
ation of what indeed may comprise discrete
depositional events truncates the thin-cycle
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Figure 2. Cumulative frequency (CF) distributions of Paleoproterozoic (A) and early Paleozoic (B)
cyclic carbonates (as in Fig. 1). Note that exponential constant for Paleoproterozoic cycles (—0.25)
is smaller than that for Paleozoic units (—0.35), reflecting greater uniformity of cycle thicknesses
among Proterozoic population. C: Cumulative distribution of theoretical cycles generated when
assuming constant subsidence, some probability of deposition during each model iteration, and
compiete filling of avallable accommodation space when deposition occurs, Iteration continued
until number of cycles generated equaled population of Paleozoic cycles; because estimates of
aggregate sequence thicknesses and durations are known, model values of iteration subsidence
(minimum reported cycle thickness) and probability of accumulation ([total cycles - iteration sub-
sidence]/total sequence thickness) yield trends in cumulative frequency (C) that are identical to

those reported from natural sequences (B).
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end of the exponential distribution, thereby
producing the lognormal character.

Third, even though Cambrian exposures
near Wytheville, Virginia, may be an atypi-
cal example of cycle differentiation, it is
equally likely that the very exercise of meas-
uring section in ““cyclic’ sequences causes
underrepresentation through amalgamation
of thin but genetically equivalent beds. That
““metre-scale’ as a describer is frequently
applied to such units suggests a bias in the
recognition of all such facies associations,
regardless of size or origin.

EXPONENTIAL DISTRIBUTIONS

If thicknesses of peritidal carbonate cy-
cles in fact represent a sampling bias of ex-
ponential thickness frequency distributions,
what does the real thickness structure tell
us about carbonate deposition, other than
the fact that depositional episodes are not
evenly distributed in time? To generate an
answer, a simple stochastic model of cyclic
sediment accumulation was formulated, the
results of which closely emulate available
thickness data (Fig. 2C). Under conditions
of invariant sea level and constant rate of
subsidence, we presume that sedimentation
fills all accommodation space whenever the
value of a continuous uniform random var-
iable exceeds a prescribed probability for
cycle accumulation. By specifying only the
probability of deposition and rate of subsid-
ence, an exponential distribution of cycle
thicknesses is generated, much in the man-
ner that successive coin flips result in an ex-
ponential relation between number of flips
and number of consecutive heads or tails.
Moreover, subsidence rate and deposition
probability can be scaled to parameters from
any real-world cyclic sequence. Specifi-
cally, if the amount of subsidence per model
iteration (IS) is taken as the thinnest cycle in
any sequence, and if the probability of dep-
osition (P) is taken as: P = (number of cycles
in a sequence * IS)/(total sequence thick-
ness), and if the number of model iterations
equals the number of cycles divided by the
probability of deposition, the resultant cu-
mulative thickness frequency is virtuaily
identical to that of the cyclic sequence
(Fig. 2, B and C).

Although such relations appear incompat-
ible with a scenario of periodic cycle depo-
sition, they are in complete agreement with
a perception of rapid but stochastic carbon-
ate deposition in settings of generally invari-
ant subsidence rate. Moreover, we empha-
size that theorization of random cycle
accumulation is decidedly not in dispute (or
in concurrence) with presumed periodicity
among groups of cycles. A characteristic of
some cyclic sequences is the presence of a
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stacking hierarchy, wherein a pattern of
thicknesses is repeated throughout a se-
quence. Such patterns have been interpreted
as evidence for an orbitally forced origin of
individual cycles (Goldhammer et al., 1987,
1990; Osleger and Read, 1991). In this con-
text, the determination of periodicity from
bed-thickness data can only be established
statistically by time-series analysis of thick-
ness variance with stratigraphic position,
and any representation of thickness vs.
abundance alone cannot reveal whether
groups of cycles occur with any periodicity.
Although exponential thickness distribu-
tions argue for aperiodic accurmulation, this
need not negate the possibility that cyclic se-
quences in rare cases may also exhibit order.

Much in the fashion of Mann (1970), who
cautioned that ““‘Cyclic sedimentation,
which so long has been construed as an ob-
viously deterministic phenomenon, in fact
may not be,” it is our contention that thick-
ness distributions of shallow-water carbon-
ate cycles are incompatible with models of
periodic deposition, and probably record
stochastic processes of sediment accumula-
tion. The possibility that periodic sea-level
change could result in a series of beds with
an exponential thickness distribution has yet
to be demonstrated or even considered by
proponents of eustatic forcing. In light of
available relations, we conclude that most if
not all metre-scale carbonate cycles formed
in a random manner independent of any pe-
riodic extrabasinal process or mechanism.
Exponential thickness-frequency distribu-
tions suggest strongly that peritidal carbon-
ate cycles are in fact aperiodic.
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