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ABSTRACT: University Waddell Field, in northeast Crane County, West Texas, has 
yielded more than 19.5 million barrels of oil from Lower Devonian Thirtyone Formation 
deep water cherts and siliceous limestones. Oil production is on the decline, and current 
recovery represents only 30 percent of the original oil-in-place. The low recovery 
efficiency, despite 50 years of primary and secondary recovery (gas injection, 
waterflood) and a partially-completed 20-acre infill well pattern, chiefly reflects reservoir 
heterogeneity induced by complex facies relationships in a basinal turbidite 
channel/levee complex and submarine fan depositional setting. Analysis and 
interpretation of core and log data from University Waddell field permits subdivision of 
the approximately 900 ft thick Lower Devonian reservoir interval into four regionally 
mappable stratigraphic units that define three large-scale (>100 ft thick) distal-to-
proximal successions. Major field production is from porous cherts and siliceous 
limestones in the lowermost sequence. Reservoir bodies are composed of silt-size to 
fine-grained, siliceous skeletal packstones/grainstones derived from the platform 
margin/slope and transported up to 50 mi basinward by turbidity currents. These 
porous, relatively well-sorted facies represent episodic, high-energy deposition in 
turbidite channel/levee to proximal submarine fan complexes. Mapping of individual 
facies bodies indicates lobate to channel-form geometries that generally trend north to 
northwest, parallel with the regional depositional axis. Reservoir facies grade laterally 
and are interbedded with nonporous facies that represent slow accumulation of mud-
rich sediments in an overbank and distal submarine fan setting and background 
hemipelagic sedimentation. Although fault-induced compartmentalization occurs in 
updip Thirtyone Formation reservoirs, the role of faults and fractures is poorly defined 
for University Waddell Field. The complex anticlinal structure in the southern portion of 
the field requires 3-D seismic data to adequately resolve. Significant (50-100 ft vertical 
offset) normal and reverse faults are recognized from log correlation, although the 
current well spacing precludes mapping of these steeply dipping fault planes. Although 
open fractures are common in core, existing data are inadequate to determine their 
spacing and orientation. High-resolution resistivity image logs from future wells are 



essential for evaluating the influence of fractures on reservoir behavior. An estimated 17 
million barrels of remaining mobile oil make this reservoir a significant target for 
enhanced recovery efforts. The highly heterogeneous facies-induced reservoir 
architecture accounts for many of the production anomalies, poor communication 
between injection wells and flanking producers, and undrained reservoir regions due to 
inadequate production completions and inefficient waterflood sweep. To access part of 
this remaining oil, nearly 40 recompletion opportunities were defined in existing 
production and injection wells. Five geologically targeted infill drilling locations were 
defined, the most favorable site coincides with an undrilled structural high. 
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ABSTRACT: Fluxes of biogenic carbonates moving out of the euphotic zone and into 
deeper undersaturated waters of the North Pacific were estimated with free-drifting 
sediment traps. Short- duration (1 to 1.5 day) sampling at 100-2200 m points to a major 
involvement in the oceanic carbonate system by aragonitic pteropods. Pteropod fluxes 
through the base of the zone are almost large enough to balance the alkalinity budget 
for the Pacific Ocean. Dissolution experiments with freshly collected materials show that 
low pteropod abundance in long-duration collections results from dissolution 
subsequent to collection. Short-duration sampling showed significant increases in the 
ratio of calcitic foraminifera to aragonitic pteropods in undersaturated waters, indicating 
that calcite was preserved relative to aragonite. Approximately 90% of the aragonite flux 
is remineralized in the upper 2.2 km of the water column.-C.N. 
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ABSTRACT: Karst morphology appears early, even during carbonate sediment 
deposition. Examples from modern to 125-ka-old sub-, inter- and supratidal sediments 
are given from the Bahamas (Atlantic Ocean) and from Tuamotuan atolls (southeastern 
Pacific Ocean), with mineralogical and hydrological analyses. Karstification is favoured 
by the aragonitic composition of bioclasts coming from the shallow marine bio-factory. 



Lithification by aragonite cements appears as a rim around carbonate deposits and 
dissolution and non-cementation start at the same time on modern supratidal deposits 
(Andros micrite or atoll coral rudite) and provoke the formation of a central depression 
on small or large carbonate platforms. In fact, this early solution of the centre of 
platforms is closely related to the location of each of the studied examples on hurricane 
tracks. High-energy events, such as hurricanes and tsunamis, affect sediment transport 
but hurricanes also affect diagenesis as a result of the enormous volume of freshwater 
carried and discharged along their paths. This couple, lithification-solution, is localised 
at sea level and accompanies sea-level fluctuations along the eustatic curve. Because 
of the precise location of hurricane action all around the Earth, early karstification by 
aragonite solution, cementation and supratidal carbonate sediment accumulations 
(high-energy trails) act together on all the platforms and atolls located inside the Tropics 
(23 degrees 27') between roughly 5 degrees -10 degrees and 25 degrees on both 
hemispheres. However, early karstification acts alone on shallow carbonate platforms 
including atolls along the equatorial belt between 5 degrees -10 degrees N and 5 
degrees -10 degrees S. These early steps of karstification are linked to the ocean-
atmosphere interface due to the bathymetrical position of shallow carbonate platforms, 
including atolls. They lead to complex karstified emerged platforms, called high 
carbonate islands, where carbonate diagenesis, together with the development of 
bauxite- and/or a phosphate-rich cover and phreatic lens, will occur. 
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ABSTRACT: This overview on event deposits is based on (1) a brief summary on 
denudation rates in regions of various relief and climate as derived from the suspended 
and bed loads of rivers, (2) the fractions of sand and mud present in the fills of various 
basins, and (3) the mechanisms controlling sediment remobilization. In continental 
settings, size and frequency of event deposits (debris flows on alluvial fans, avalanching 
on fan deltas and overbanking on floodplains) directly reflect erosional processes in the 
source areas and the ratio of denudation area/accumulation area. In marine 
environments, both sediment supply and the change in near-shore accommodation 
space largely control the nature of stratigraphic sequences. Under conditions of high 
sediment supply and low-frequency sea-level changes, the thick systems tracts tend to 
show only minor differences in the presence of event deposits, including tempestites. 
With decreasing sediment supply, event deposits are increasingly concentrated in the 
lowstand systems tract. As shown by a number of models (with differential subsidence 
or uplift of the basin margin), rapid relative sea-level fall accentuates both coastal and 
submarine sediment remobilization (rich in sand), particularly during the early lowstand 
phase, as well as delayed valley incision. The resulting submarine fans tend to be sand-
dominated, whereas large fans fed by major rivers are dominated by turbidite muds. In 
regions of coastal uplift, valley incision persists longer than the lowstand period, and 
sea-level changes may cause "pulses of uplift" and phases of punctuated cliff erosion. 
Along carbonate buildups, lowstands of third-order or higher frequency sea-level 
changes are often recorded by coarse skeletal debris and megabreccias and/or, in the 
case of mixed systems, by siliciclastic turbidites. In rapidly closing foreland basins, high-
frequency sea-level cycles only tend to affect both the proximal and distal basin 
margins, whereas third-order sea-level changes have a limited potential to directly 
control depositional sequences and event deposits close to the overthrust front. With 
high sediment supply, individual event deposits (such as debris flows, sandy and 
calcareous tempestites and turbidites) mostly form at intervals of tens to hundreds up to 
some thousands of years. Longer recurrence intervals occur in settings with low 
sediment supply or characterize very large mass flows and megaturbidites. 
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ABSTRACT: The rivers that drain the wet, mountainous island of New Guinea discharge 
about 1.5 billion tonnes/yr of sediments into the adjacent seas. Despite this huge 
sediment input, there appears to have been only limited deposition in the Gulf of Papua 
during the (Holocene) postglacial rise in sea level. Seismic and core data indicate that 
the transgressive systems tract in the Gulf of Papua is thin and patchy. Of the possible 
explanations for the absence of a significant transgressive systems tract, inland storage 
and along- and off-shelf transport of the sediment are of greater significance. Reef 
growth up to the latitude of the east-west- trending incised-valley system in the southern 
Gulf of Papua is considered to have been facilitated by a northward-flowing coastal 
boundary current, the Coral Sea Coastal Current. This current now sweeps turbid, 
brackish waters and terrigenous sediments discharged by the rivers northwards away 
from the reefs. An observed northward offset in transgressive sediments in relation to 



the axis of the shelf valleys suggests that such a northward- flowing shelf current 
operated during the late Pleistocene and early Holocene. 
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ABSTRACT: The edge of the Eucla Platform in the Great Australian Bight is used to 
illustrate that the margin is a series of extensive prograding clinoforms. Progradation is 
interpreted to be the result of off- shelf sediment transport and in-place carbonate 
production by actively growing deep-water bryozoa and sponges. This area is a 
potential model for ancient high-energy platform margins during geologic periods when 
large skeletal reef-building metazoans were scarce. -from Authors 
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ABSTRACT: This study develops a currents of removal methodology to examine and 
quantify the nature of physical transport processes affecting the formation of bioclastic 
deposits in the Cocos (Keeling) Islands, an Indian Ocean atoll. This approach is based 
on the hydraulic settling and threshold of entrainment characteristics of bioclastic 
deposits and measured current energy. Potential mobility (PM) analysis of 157 samples 
quantifies the proportion of deposits able to be transported in each geomorphic zone. 
Results show that under mean energy conditions wave-induced currents entrain and 
transport sediment within the atoll and show that transport of sediment is not solely 
reliant on storm energy conditions. Gradients of PM values are used to reconstruct 
sediment transport pathways from the reef flat (85-100% PM), through shallow 
passages (75-100% PM) to sand aprons (50-75% PM) and shallow (0-20% PM) and 
deep lagoon (0% PM). Comparison of settling velocity distributions of bed material and 
sediment retained in sediment trap experiments show that actual mobility levels 
correspond with PM estimates. Potential mobility analysis also identifies the immobile 
portions of deposits which increase lagoonward. Constituent analysis of immobile 
fractions and analysis of settling frequency distributions are used to differentiate the 
importance of physical and biological processes in the formation of deposits throughout 
Cocos and identify the role of each geomorphic zone in the transport system. The 
pattern of sediment is controlled by physical processes between the reef flat, the 
primary sediment production zone, with sediment transported through the shallow 
passage conduits to the sand aprons. The formation of shallow and deep lagoon 
deposits is controlled by autochthonous sediment production and storm deposition. 
Potential mobility analysis is a powerful tool enabling physical transport processes 
within bioclastic sedimentary environments to be quantified. The ability to examine an 
individual deposit's hydraulic behaviour and development also enables depositional 
processes to be examined at a much finer resolution than previously attempted using 
conventional textural approaches. 
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ABSTRACT: The open-ocean carbonate slope N of Little Bahama Bank consists of a 
relatively steep (4o) upper slope at water depths of 200-900 m, and a more gentle (1-
2o) lower slope at depths of 900-1300 + m. The upper slope is dissected by numerous, 
small, submarine canyons (50-150 m in relief) that act as a line source for the 
downslope transport of coarse-grained carbonate debris. The lower slope is devoid of 
any well-defined canyons but does contain numerous, small (1-5 m) hummocks of 
uncertain origin and numerous, large (5-40 m), patchily distributed, ahermatypic coral 
mounds. Sediments along the upper slope have prograded seawards during the 
Cainozoic as a slope-front-fill seismic facies of fine-grained peri-platform ooze. Surface 
sediments show lateral gradation of both grain size and carbonate mineralogy, with the 
fine fraction derived largely from the adjacent shallow-water platform. Where unlithified, 
sediments are heavily bioturbated and are locally undergoing dolomitization. Upper 
slope sediments are also 'conditioned' eustatically, resulting in vertical, cyclic 
sequences of diagenetically unstable (aragonite and magnesian calcite-rich) and stable 
(calcite-rich) carbonates that may explain the well-bedded nature of ancient peri-
platform ooze sequences. Lower slope sediments have prograded seaward during the 



Cainozoic as a chaotic-fill seismic facies of coarse-grained carbonate turbidites and 
debris flow deposits with subordinate amounts of peri-platform ooze. Coarse clasts are 
'internally' derived from fine-grained upper slope sediments via incipient cementation, 
submarine sliding and the generation of sediment gravity flows. Gravity flows bypass 
the upper slope via a multitude of canyons and are deposited along the lower slope as a 
wedge-shaped apron of debris, parallel to the adjacent shelf edge, consisting of a 
complex spatial arrangement of localized turbidites and debris flow deposits. A 
carbonate apron model offers an alternative to the fan model for palaeoenvironmental 
analysis of ancient, open-ocean carbonate slope sequences. -A.W.H. 
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ABSTRACT: The Otway margin forms part of the cool-water carbonate province that 
extends along the entire southern margin of Australia. Open shelf and upper slope 
sediments are bryozoan rich. Sediments on the modern slope to depths of at least 2300 
m are dominantly fine-grained mud flow deposits, reworked from the upper slope. 
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